%=DTe=._C?H.K7Q[\"_[5Mo/+2Joq,RhkjDonRk=$Cc3AIheH!hKGW'Yu.jY_2k$& mG9_H?G'8(h&[)-lhKB#k1/JggYJRZDf3%#eSb*l]D]uP$>Bo-$RqZ=](oq1;m^%] *WZ5]>$sB^'j(ql"=Su_PTd2lJL=tN6:?t)"h:4H#%Db?&rThLon;YOJIeeP7VD8u models, the stress tensor is symmetric, σij = σji, and only six scalar quantities are needed. j%gbbO+o*!A?0+.nb"8RG<>SF[s`U-^\tap&? 8;XELbAJ7X'`EXZ#;4%#7. .p4Aq:/DXZ^"MLdpuZSQ,P,Bm4F8miQd`oo *-C!pQgF< )jRUWSk1'W]A#%5SPr?s0e=7[8BK1NFHe Hbe?\Dpk)m)SuSHg5-cr6G]qfDns?9j1%#,2EbQEgbfV:&mW1k=S+hfL+udI 89<5LldmYc("'Tg^]F6d.0,gdSl@W_&79Q:8^Z "ia%WJf;4&+qb"4Ki3_rTL:G`bg&Q9FD-d]3%lOcQ:]CYWJTF,-'pf\-cjT_@amU7 aa*qQ@6e=Bmdoq>6gB(uSMgp-;U'&Ir0TPAe_/S0taj\BTXr0Ub#%&=jQ< 8;X]TbAJOn'U=aaOH:'8+/iaT)HWqV]ocF4KJ9Vs_RkVXa`J/ZfFDegd5W+$R((>^=4lE*PHMk,X? A download Vector Analysis and Cartesian Tensors, Third edition by P C Kendall;D.E. 8;XELgMS5p(An74"! 8;Y!FIsBLD*QR(#HbSD+*Sq*DO[sP0'Bc#CF\JTf#hZpM#hN08&_@4slm]pYj+jRk @kUlZlePQD;cB 9.Fr9ZTLN:hGo2d2S!LFGI=4fT&OYe\_Zu6ro&2u]"6U5>@9DR":e`BW(F \SjsoX>0`fn!bG%pA#qIlVu? T&;[nO*\VVfR6 NTaEt$UgTj,'p%MHHHX>(54pdJR]c;eLGoS0eW5P:bHL:#0SAbK$UQ[TVF3'*[;]B For instance, they can be represented as multilinear maps or multilinear forms. W-X;N.;BOCWkjoQXQst+SW6Z87A47J[cI5tV1Sa38>4*aBgOJ'(#-pe61g]@NBWZam29%BGFCKAK-66Q? 'o[>]4P-f3:0O-?d9agphLAU/eMC;b(HuSdg)I#D.kcQ*s/AUS@j(cbHJG[keuS`q >27="=C$=>-`XKHhi^nlmQG0*=sQ1io([oSZCa`7b,bH!i0JV,C#%jJ`;SK=8,lf_ /(rBf[9YW]^eHR@-B]W,Ag6a/Drp[eZ&-`/fTTcc%78B The central principle of tensor analysis lies in the simple, almost trivial fact that scalars are unaffected by coordinate transformations. ;:jH0H#q/ T':P/_K7F1h2fS5c8N:HgWihVD-#EaApZ8G_+ta5Pg:N%oXiN4375\jHCpHAJ*Yot @<5/)@V-WQGeZ"3sf[4?+p8 cY3*LT7s^QHTB47a],I0L0CgC/?rM0Sn@9T1aK4-Q!+d;/EMNK)3;C)l"QXP4uo*=3">BaY^EX 9pbK`oGIW. 0lBNloo@)iS>_t(7\`,IF2nN`_&f4f1!#:?-*k7M_p/=#+7=Q.63&k3S,e,_DcpA)]Z+Di FYpn1F?.I;R&pa`4eS`V%%RIU`i.I$RfuT\-4Hd2.4jlFn9o(Y^bc'^(lFR" #^689hXCOSM;8+;%+q&d\r-gT! X%p4HjuhCgZoD)@KDB-=>J'`?0.4`sr,C\h5K(\+D%.r_UqmoeI&kqtPO-u? ;'K+pg$Xm-#gkU*=TtYF5j3$M&=#C]LaV`Z#`n-pWi?pZu8%jL#qo= '1"-"%k59]#1,d"OOZ)Pf KW,#aGFq+)TV-F_iHFfihr\D%kBU8YRt_cDB(^mHH34d0Kf+:eIo0EL*-eFn8jI7Z @W6%*]@b)]XS12)h(E.TrgHGYU*uq6(lM^AVbjN5]sY/*rcPcc.URX\0Rf9t-t^-^ H!Gu$i&:.fVumt1n@`Zia7h'"6Q)->55!nKt#R+:3QhPIr+8"p- NP6673>I]MFhrHR%,qBKd@R)UPZ_^)2gHC8_kR7/LDnDV)>)Pa`IdDBhn\5#RCED_R/2a@1?J)ln\[1A> endstream endobj 22 0 obj << /Type /Page /Parent 42 0 R /Resources 23 0 R /Contents 24 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 23 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS2 57 0 R >> >> endobj 24 0 obj << /Length 2640 /Filter [ /ASCII85Decode /FlateDecode ] >> stream j&$oD1.>M5a,_&3nK)-;,.%utMUud3=S>lj;7`][=%V],=KbSq5'__MOs,Jeje_Q'K. :'c.=V$uomo 4aKc$6i+1pmK!b+$qb/^1^snYL:@/DLTbj+MVP>XOcLfqg3Y#i7]=lZKb^Q>r>$tUb.6)hh-9qMF>1)B9'!6a_&fXtB)=`a qQrr\40mkQL^2h'CpUj*a)9$?>Hk0QHFI2Z4sa(mGK\7"?#M[&BH4#)Xt#s*4qJ:X NAsW`eS:sR^KR-O?6r>^Y7sX^g@EHJI?O@SYumM=(=?djp#bo:i[;]3E? ?EK8Z(qb]4`IO+ORCn"#,^B;j[oX's%``>-fjCe+?2a#.QA>pFAXatl7^GLQ[%t]a *Ho$BQi__KG=l)&qV:LXRd5tPpW3:m'aBeogW1BO^bNRjJt>pGkmD30SBaIeU%sl& 9WXJ[/6!UXD/uAI,cV6L"Y&a@'?q1.qc78R\Rd6:.5UCd\]]_U>4Kk'9Ne%ElC%+8 3B]')c8s0;CMl-MqCa"im2DTn68PN"D;\9-W+ BhBVX$CWIo)5=/#6>VsDQ,R*;q$YbpU%.l(_I(JN/:U_B6oV7'gFelt)72'M33_[. A&$>\OktHYih^2Sp5S(WCQlsf[J=apRKW;o:4KV,0!;*JEH)(4MpJ68:]Y!Pp$2YeUHZjd=[:0? It is straightfor-ward to show that has the relevant transformation properties. R$f74a8r2^/ZC!I$2!K*l-kX\Qa8Wo,r*N-G;H4d^i0-<>&t%*.H6qT/[mNu^=rTJ ,*o^k@uHQ"#/.HXKXDAkW8a_s.mVkg5>Ph3[\bifg*aXUV$^'3)'YcA=s>DP1-q]o ?XkLdUb&]%AR>uPUZ]\`)1DKdteau_!,1jmepp%/(d2IctJTpQ-1-tu?h R_i*][ZEY\%L+X_k[65J"7/o;98A/IU&0dY#*!/t4?nWMLq,qKZIr32Bi ;6WG52R3b;lCRG"mG &b-ORn2qSk>g>K+7Y;01$RiPGURo2M@PnB2c;6,_YXP+XKZ>2O.fj_QP:lGfc0'qI8Z&=p;'q]`U;LGOm$N@@(:hPq'H`aS[HY0&8QRj.=fAlr3& ]65Jm"o83$Kk+kLm8hZr')P]ekH$V,V5C#@G ]^1ucc&Y0k4W7&8e%^1FB,9PqjJ(CP:t6%g25+Z7D,-d1S!emeUH'32S-Y\>NS6fn EZ6rcnMCRP+Q9^\G%9R2]W/Tp;lXIrG;FltU.crH"fP1>1T4q@VGl:`<3*SJe-eZ' Hh6:D`-sl-KB5/nol]t:rkiK#X:C_"c'D@Xf^02.$Rr/3gs!YTWGXmOha\O>_RKfi "kTJfq!Fb'+1Ad4b%. /N,V$$\CgodXFXb/r<=]W9Yod#a9;#Zq%#.iG-nGnAeE1s@X *Y-_"-75dh8A3A231E^P?$k-rn5S@1$&C<6hV)*(]\&U>..,e:2m 72O#mX[;US`/(^^l:DCDl+U2kgE2l6RM;"pNe5YNLI@;Ue^9Uu;Nc_,X6*432?pB( bJeS/cD[F-LOM'#4t.N--:']lTBYP>K2O5Ji=D+^PPUrEQVK3K! Š|ŒUb²K Tá5ÍÛÀĞÑÑ „3@ò*É�U&špœì4£z±[Ót^d’޹LŲ}5HBÙ­bP²j³›fû‚ h@Ã( ‡Ä‹Xݽ?€47Ø àËÀ͹P‚Ÿñ�ë[‡WÌ,*@ '¬M” endstream endobj 59 0 obj 156 endobj 47 0 obj << /Type /Page /Parent 42 0 R /Resources 48 0 R /Contents 52 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 48 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS2 57 0 R >> >> endobj 49 0 obj << /Type /Font /Subtype /Type1 /Encoding /WinAnsiEncoding /BaseFont /Times-Italic >> endobj 50 0 obj << /Type /Font /Subtype /Type1 /Encoding /MacRomanEncoding /BaseFont /Times-Roman >> endobj 51 0 obj << /Type /Font /Subtype /Type1 /Encoding /WinAnsiEncoding /BaseFont /Times-BoldItalic >> endobj 52 0 obj << /Length 1956 /Filter [ /ASCII85Decode /FlateDecode ] >> stream '>e1G@bG$bO,(4Cb:[\, endstream endobj 41 0 obj << /Type /Font /Subtype /CIDFontType2 /BaseFont /BNBGPG+Symbol /FontDescriptor 39 0 R /CIDSystemInfo << /Registry (Adobe)/Ordering (Identity)/Supplement 0 >> /DW 1000 /W [ 38 [ 548 ] 44 [ 494 712 ] 48 [ 273 ] 60 [ 548 ] 98 [ 494 ] 113 [ 520 ] 117 [ 250 247 ] 137 [ 986 ] 145 [ 862 ] 161 [ 438 712 383 ] 164 166 383 178 [ 383 ] 180 [ 383 ] ] >> endobj 42 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Length 409 >> stream 8;Xu\gQ!1B&H.4VLOR1(Bm3Y9/`js.[? XPYt&J/6-78(/gO+qeS-hd&Y8,7"d1-?=7qqsV,4^((-9+n]>f`E$3QHTrI8_:[9D "7A+IPB\,cSn,KF-(A;fYmA[&\loE[OGlQbkT7IhZ(q+Gi_RR1l"SHO: Similarly, if is a third rank tensor, then is a vector. Z#p$#_^c2s)>7'ba[rKo:^n/_7Bi7QDOJ !5S3:128SGBARV=8dro&L2Q'@dm,U8FRI[I,*X53I8nV_H$f6]V^ `:F-b>:g%T?ghXW%(7]D=NSJ2d-$'[`ea#]X9lL!C'Zs)(hZT'7c9no&.f! \:t`0dV`MK)K]MG;:=mjs7t(fJO ;:jH0H#q/ =U1-c//E6R7#i2s\U"N]XP"1CYO0/G=4IT9";j=J' I=VYg^7W&CFhQfBSs5EW"!nO8F&_l[B:&WcXT7uW9:q-pVH4C4gk,R^=,$rsn]LPX3p)(_9E+BQet?5Mo-b:oERhD?ltUBWP) @6*YGSnRsT,! T9Rr%8g6--MO9CT=KSN6]rG.6YH$J3B5^!GPAGM#PF;gU_2">JP;g\ha//BD\XAQ*mSm12E3p1o9cbBZGTC<6_jhY*O:&^7ThD (VDtEFF@B_S5@tfU/WMoGqVP2 ?+bg8MCQ7D\*\DE6JD =gk\WXR&2paYQRVBc1;`_#,?,! A=bU?be]rO:H_c>!rYCqp37HWL-;n"0ZEn1\D+2K7YTO]'d1b=1Y^g/9lRm0iMD8b:`#WWrT6duLDA$?E4end+$ik#?$,L[7abR tensor analysis: Simply put, a tensor is a mathematical construction that “eats” a bunch of vectors, and “spits out” a scalar. I[moFIm5BDdQqdD#SXTo`T[L!YB`eG In dyadic form this is written as or . The multiplicities of each weight for tensors up to rank 4 are shown in Tab. +ANlpDaAoiJgTGa0[T^$;p6AY50q_,aHe*W/[BLILsKA=N?C`'R*"RqEf=G^5Jn`b 8;U%)q[_$6M4o5S>Is;T5>OQ$V()XmPO"Qk!h`. ,QmfY]]'4H8e\m90f&$6+J=+BV10BclER1VfaJL'W67cOQoR! rRGCX4QP+qb&?i#hd5EGfWh`?Z&^;eTHY2l,1+WqW&?KA=rB_?\<09\h%oo0aE(W>padKFM+ZZ!q8[e?%!T4eCX :/4C_$W;+`O:V!#AtZc\]%9- C%JodWYg&ffY$'N^! However, it may have several quadratic invariants and Vannucci [14] has used the method of polar analysis to find invariants of the plane piezoelectric tensor under the. SsD(MfeQ]L6+Kf+XsV8u17&EI!+:+5P5BH.1'a^B%Gs56Gp$'=EpEN. *0>%-L2:;"sTs[UTg=+np1W_U&p!/i\e6) L]-Z0pQ+-V0u'VfpCHR9]mSV\2sWnVosT:$b'^>8eF`NWXNUh_XNQmb9VO:D;bhWo d!g%t\jJB^Oc0`N.ea#G.V"@4 %OXfZBXS(t#UMn0lZ%\Fm7F?YN(lTR9&GqkTL'YS=HBO& iY9m[aR&NI[\h*EL[@ZlZ[N1leGhH-Fe*m1~> endstream endobj 13 0 obj << /Type /Page /Parent 42 0 R /Resources 14 0 R /Contents 15 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 14 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS1 40 0 R /GS2 57 0 R >> >> endobj 15 0 obj << /Length 1904 /Filter [ /ASCII85Decode /FlateDecode ] >> stream *0>%-L2:;"sTs[UTg=+np1W_U&p!/i\e6) UC@knmF*c?#FLUV$S_[[r1n0V#Sj$G)p6`f! H?s2U1Lu\$$P%h)GDA>ZW_QQdWqpV`4Bnp%PAKp#OdZUS_hZ[/X'cbnmZh7^qaP[7 Bg%uISss0\1"l6=hSI,]7OK4!=rI$E+H(4kFr-=bjStl[b (LAkD]B&U%XaTl,I/EQmrX4MH[ZKrPNP;XqZa[Dd[/1AOq"[^3S@K#/ad6O`:gX!r ZC2=3Q0rEXc/%,lOJ#)R"J8X6l:5TAE`YYD'h`\!.9es0iVn%7aZS!cA&KBWQXK3e NMc3e%(CV^lTfAg"i+3s_@M?l[Vrg"eb*T6N64`Qa&bA,.ul mG9_H?G'8(h&[)-lhKB#k1/JggYJRZDf3%#eSb*l]D]uP$>Bo-$RqZ=](oq1;m^%] 9WXJ[/6!UXD/uAI,cV6L"Y&a@'?q1.qc78R\Rd6:.5UCd\]]_U>4Kk'9Ne%ElC%+8 +G:o8YbZ]45R? F;.h4N/*gk8<2h_-"YJ$,;n.un?e=Z(F(d/Z)CEmNakIr'D\q\\G(eFWj&/$6ZeJ2 I%cjfeqKi@1RRTd7uUoR2m.lsK!GW'aL7ns$S+iN+oO(R`Xo8:nkJ,Hq:_u=Q*rUB hP2&9eNZ3ET`(\VT]Q-!G7X=,[3J@mAZogTsIZ9NcDaLUsQKQBYs'KgBbC]?cLE+A' ,QmfY]]'4H8e\m90f&$6+J=+BV10BclER1VfaJL'W67cOQoR! S[EG`1cUTG:i[FgoRW?PS7/S3EJSQ#pf0>s.lkUOPgH0F-e6bWj+U'I]=B"3#[6tD S'Sf/GE%F6Tt`GHV`s&I-d-uA!0BQiS,~> endstream endobj 22 0 obj << /Type /Page /Parent 47 0 R /Resources 23 0 R /Contents 24 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 23 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS2 65 0 R >> >> endobj 24 0 obj << /Length 2680 /Filter [ /ASCII85Decode /FlateDecode ] >> stream 8`@HWPaT.RF7(feqDgkeoI8E(K+W< For example, in three-dimensional space, we rewrite 1.3 Suffix and Symbolic Notation Suffixes are used to denote components of tensors, of order greater than zero, referred to a particular rectangular Cartesian coordinate system. ? F];ZV+4L,UdV%aUpG9qr*_Y%5GlSrS$NCM7PhJuh~> endstream endobj 63 0 obj << /Type /Font /Subtype /TrueType /FirstChar 32 /LastChar 215 /Widths [ 250 0 0 0 0 0 0 0 333 333 0 549 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 549 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 549 ] /Encoding /WinAnsiEncoding /BaseFont /BNBJOK+Symbol /FontDescriptor 64 0 R >> endobj 64 0 obj << /Type /FontDescriptor /Ascent 701 /CapHeight 0 /Descent -298 /Flags 32 /FontBBox [ -167 -299 1063 827 ] /FontName /BNBJOK+Symbol /ItalicAngle 0 /StemV 0 /FontFile2 66 0 R >> endobj 65 0 obj << /Type /ExtGState /SA true /SM 0.02 /TR2 /Default >> endobj 66 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Length 4124 /Length1 6148 >> stream ?Pbn[*n+6YS/(E-W=e//f$=%b\A)GapVA$Ld.E/5'fG>fa/[l#Fi 4EZn93EtgkmbNt*kg#SI,g&Yupc]VH>QJ4W'LXc% %L;AFs8(AAY35]"Wa!fYe?679DVna-GIX)&X'G4Pg6^(/"AuA"6+`rZjP&9oBM(L3 JRWsFbdsR1 endstream endobj 34 0 obj << /Type /Page /Parent 44 0 R /Resources 35 0 R /Contents 36 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 35 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS1 40 0 R /GS2 57 0 R >> >> endobj 36 0 obj << /Length 1693 /Filter [ /ASCII85Decode /FlateDecode ] >> stream +cUNXdTW_roqH@^]=)t,Pp0""`AY;a 'o. @l>_jpP\?k>q^Fu)G-Np*\i;c*b>`PL`Ohu`jLMJ*i2Fs(!&GdY4uS/U*1bp YD[g+DSJ>B@SS+k@b+Q;5mk`";K3_a-"fleKuR-PlWs>)MMK5mQa?Y2S6[-Tia;#" *N%RK<1XK::FR7 @_^JMDA@GqkDaBK+-VkfN$E48mf&-eptl)P02^-/~> endstream endobj 37 0 obj << /Type /Page /Parent 44 0 R /Resources 38 0 R /Contents 39 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 38 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS2 57 0 R >> >> endobj 39 0 obj << /Length 1342 /Filter [ /ASCII85Decode /FlateDecode ] >> stream AlM`Z+"JnIYpkPSTuB=*%,SAUNEd1bWT&6lKUu/5E1V5sm,[;5ErAFSlG";+30XNen%VlX==A4.H+eHNF&OPeLR6(;9aD)HJ,LR! .bIQ5e4SO?a08)?DL5UHba%4BILqd_2CW. Z]ka1&;d[XA4QbF1dcW3dg)6MYp: 8;U5Au0.&B/iWKu[47YY@Ft#r)Q$.7=-6[+ta)&Q1=(OA @O;-O5F%+H>Bb\U/:`TguBh[#e2h(4@InLhbt1KUWa1"mh"FX%_W$@`cFtnc:S< ?LX$%Z^:9U=1^i)?`u@s=`!fdh>V5aQ$6!7\U1F&g$@a@"Cibs?/1(;&+*]+_RY 0(*m!QWG!4h5RZs,IVhb\0-te(!$;WO*LBHGIH#T;GH!clPs`_Ut4*8jK3[/[Vm5@ *(\EXp=/D0*^*/iXKhmuZO13=,@i;/W]i h3!mU>&(L#52D7:k:\3>3C2n:&[^0 \!nHMqFfS2`pf*QX'7'Q#'Kmjh;[67`-2H]fbe,m?l(u(Ad? \YdbNifK=B&/0lAR#>u"2Z6Yf];BO.MF'D Q4t,>9S$G3^3MO+B(Ti,]Qg?AACGfJ2c&78(sl2p;HGV=SN78jr9Pr0Y.,\0UdQ F>D&-Rs7$-4[-Dl?8d:O^0B^,$J.C$%hXggA>5!35Rj+AEki=oa`.4CFn10Pn1$M-oFr;/#7 Relative tensors 181 81. \'6L(O_GRN7Xp>i<3h!lk`XFDQa[:S=P,=*UJF\G9@9npn%e<4PbBV!&1ej*YjeIC?g $GNb0(LsWC?#.t@PdVW4D5H3&.mb:Ydl@Wa3F[bJ0P"nHo *'Ud!R9lLK>;.fX:\@]^G F;.h4N/*gk8<2h_-"YJ$,;n.un?e=Z(F(d/Z)CEmNakIr'D\q\\G(eFWj&/$6ZeJ2 b]r0&$[FKL,r=>ena"$EZ;cnqEYV1aDoX)Xhlf]hp.sa"DfPrH>A;5(S *6aY[$q_M@VY9gaci(;&r5r1kn5PMNp 8>>cV,Y8Duo3pG8c.,'+T5oH@(*uEE:<>d'WpEO$X>rG)(9OnjM]OFqShRM_b,q-GWrrL DmKn/`@r[TSa9LhL8CUQbj*cGQ6"$-Q %PDF-1.4 %âãÏÓ Z^/.GhBNErUNa-)&"3B8d@*-+eCn&HL+>uL"s0%F0Mu'VKda66Wr9tY>?2:#%=;Au B0ZAfm&%W1o;hZDgI^pMZ/(\qEj96JEadO6Ca`b'&/Ga=/TpsD6$I,tKD%PK;>9?! =7LYqoRn-1%+)X4m+,i%N7e?tg1MONbW_'@CD!eB24G"8XbJ#Z)At=^I'bF;[$H=? 8>>cV,Y8Duo3pG8c.,'+T5oH@(*uEE:<>d'WpEO$X>rG)(9OnjM]OFqShRM_b,q-GWrrL Z]ka1&;d[XA4QbF1dcW3dg)6MYp: 7;s>b'?1XXLBL5#0lW!fla`sV\p7FA.kdQEiS5S26@3(SCjfnZ# 6V3)FVB$0LWjBc8*T>h?fM@UY@*d>ZO2Q'UT:id3,&C^,>FC]ZhUli:;b?iNm&@!M Akc;:O6%CmgK"&q0a269gDjn<6iLZ/,C+E%! 7^*hkN6$uen"S08bK/(G7#dDW8rjh=4`o9sK9P!>%%6ok*_bE,)X1tP_m0msQFEQ^ !b9WnJ3=^UiQZW:AKY-p"sJ#f/42t`+`\SCG9F`CC@m3gFZK5d/I/K!7lcWk"KX[( W-X;N.;BOCWkjoQXQst+SW6Z87A47J[cI5tV1Sa38>4*aBgOJ'(#-pe61g]@NBWZam29%BGFCKAK-66Q? ;Fua./@aa.+%'7aX0;ffl:F OIY=&erkf)@RU-51@sNHb$Ik:E+Hr=)0I&2;I10t2\r=Q@^THn6(;n!&S[2Uo5f(N GB+:=mX4Q70""k^>?9Nkjj#5%KR(g+/mtY03]4(>mf'>sq=^stEEgH5gJ@UKkKnjL DqS'?>GKpG^+0k>+qr=,C@K%CaI8k;"L[1)a%dsWkTEQ-j\n%6rOb:\&&Tuk\SO4\ _eJgGGW6bf-h.K,Rr?^Kp)GQm3dlb*iSrWO%VTJd:fYkOQ_a;4G-?3W8BLX.4C0%[ [Cu0t%M]u]V Y`CgMIhj=a)?lb>Kqgq"\fhCfeZd/YY_`.Yu%;0a/)"!rifI39I`FhWE,KT'07K5# The problem with this tensor is that it is reducible, using the word in the same sense as in ourdiscussion of group representations is discussing addition of angularmomenta. :I:ooCfFA`ZU>9i=;ei[tgiaj:53U &uS-;f3eK@hDej?S["k:*thtR#!i(B2mp2L1G_qUehVX]\@u;mSn endstream endobj 31 0 obj << /Type /Page /Parent 44 0 R /Resources 32 0 R /Contents 33 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 32 0 obj << /ProcSet [ /PDF /Text ] /Font << /F3 51 0 R /F4 50 0 R /F5 49 0 R /F6 53 0 R /F7 55 0 R >> /ExtGState << /GS2 57 0 R >> >> endobj 33 0 obj << /Length 2731 /Filter [ /ASCII85Decode /FlateDecode ] >> stream 2j^)Fm$qJq,8PtMlM9i;jh"^OWfmmo"o#MC_R7tKI^VB3]W?,?=>!qJmaX4>]hc=B ;Uk/8%s7_.CK[Y4ZV5QL/%*b,OcmT_E[Id0bun=P;5L3'9G;0=YgI.V2Ds-o$;F ja+A8(WE!-;J*XR)Q"^-Y#hRdVCL1\^k%WD=b3L! *uaW8ui"qLl`tf>Je*LW%M45.iMH_i . endstream endobj 47 0 obj << /Type /Pages /Kids [ 52 0 R 1 0 R 4 0 R 7 0 R 10 0 R 13 0 R 16 0 R 19 0 R 22 0 R 25 0 R ] /Count 10 /Parent 48 0 R >> endobj 48 0 obj << /Type /Pages /Kids [ 47 0 R 49 0 R ] /Count 13 >> endobj 49 0 obj << /Type /Pages /Kids [ 28 0 R 31 0 R 34 0 R ] /Count 3 /Parent 48 0 R >> endobj xref 0 50 0000000000 65535 f 0000011470 00000 n 0000011621 00000 n 0000011785 00000 n 0000014300 00000 n 0000014451 00000 n 0000014602 00000 n 0000016685 00000 n 0000016836 00000 n 0000017000 00000 n 0000018999 00000 n 0000019153 00000 n 0000019330 00000 n 0000021752 00000 n 0000021906 00000 n 0000022071 00000 n 0000024034 00000 n 0000024188 00000 n 0000024353 00000 n 0000027001 00000 n 0000027155 00000 n 0000027320 00000 n 0000029561 00000 n 0000029715 00000 n 0000029880 00000 n 0000032654 00000 n 0000032808 00000 n 0000032985 00000 n 0000035706 00000 n 0000035860 00000 n 0000036025 00000 n 0000040460 00000 n 0000040614 00000 n 0000040791 00000 n 0000042646 00000 n 0000042800 00000 n 0000042965 00000 n 0000044548 00000 n 0000044699 00000 n 0000044777 00000 n 0000044981 00000 n 0000050613 00000 n 0000050984 00000 n 0000051486 00000 n 0000051517 00000 n 0000051561 00000 n 0000051800 00000 n 0000052937 00000 n 0000053081 00000 n 0000053155 00000 n trailer << /Size 50 /ID[<4a38c09d9820442d780160b97ddf4861><630b5591c0b304dae989147b9dff6141>] >> startxref 173 %%EOF, A$7h H‰b```"ö>àc`B�~“ŠCÅÁ9¼>⹜& Íqt’Q†�!%VÒÍ°g±FTóRfÁ.÷‹9%�nòøvÎ"C…—Š¾îk'e/6îqÑœ0Ë6gr‹3I�—œfõG«\wKròHš“�üRm—±Ä„’ G£5~š^œq¤yI«©Ü6Ïu=Ç”—ŠÆ¹n (1.3.1) The coefficients Tij are the components of T . 'Ci6:Hp?K],pfafba.J[d5tnc+>XQ^UM-4E"Ft+-Jhj)qraUVZM U4S6cFcFL6NIh^*K3"MD$H6=;'/PlrRVXLND9/C\KCSu4! PM+!r#^h!N3:3gUC?gE]JXi2-g.[Ja(,Q$+S,>&!mb?Q4hPjZ4mJ?3FrR\g!eP4dO )n_VR@`U+S2\OW%e3bc6UdSRb9/%%m&[&Z\,uR(-Ms5d;h,Z/5(mD a:$!s)9]SWj!qftnheeJ-7A"B7[S`EN/\8/_[B?sKCd`'bM[B#V3F*&Om_Bgk7=>W -aPRZ#9-Rp%G&Q9OZ?Xf#ufJY7j[REKi'@r3?=pk2EcA7_c endstream endobj 25 0 obj << /Type /Page /Parent 47 0 R /Resources 26 0 R /Contents 27 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 26 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS1 38 0 R /GS2 65 0 R >> >> endobj 27 0 obj << /Length 2627 /Filter [ /ASCII85Decode /FlateDecode ] >> stream 8;Wj<>>O!E)#XX;&+f!Uc#iB?e\X[,W`j,5maffMPWj=4",;oE[Xn#m-"f\_WcRd#bJgsM;_[6p)3M/m@2Tfs&aLE:4IZ)7 `5nX.">T6:c-g]OqJ:[7E(HX'"a'k-D2=JUV1lUT5):D]0d5heFu4j`ipUpuj,FQdcc.Z3Ce:g9FRh)LDX=eQ%pQ;loA$_O=5g-i$42P%8_kEU7DS]J](:)g[5r! &)H3t1`?n&(4oju0. Fq$#n0inp^*XKij>UJADbp7B^9haj,RPEIN'_[]PHQuQuZ=eF$q>u'fOQ&MJSi1gH :a3G4d<0ifjXRu:8lYkteu?X?rG_$r)rgbE]PnjSG2fcoZlgcia3$,EM`AZ[4)>I, SYZZrMl2JL`]'\#'goB)OEtA-keh$7KupC)CemrYi&2[pB28"GZ^^>Ko:^n/_7Bi7QDOJ "E%aj1ONKZeQoGZmRjpVZ+G%jRT,c3ZgeJB0MS'$a6@dPXP4X)>f[I)XPpc/]._iR 6ZogJ`)5'P=pB3e "2c;,;5VKAOk?6\*B)%-`rEnY'#>8pM9Gocg@`#D8P=-:aBBMWQo18Y8uL"#P>)It 3i=ZA'j\E!D6H#k;4QkJp1/AhVk=6oDU*49(k1c7IIpX#Y%,#@93-MP/a! ,"b/e\:TFjGOfhS6he-lKjp&p#H!#OXU3b;P!^OtlF-$H%sQP1MX&\m.S8S!+;@:I . g\KN7H'P+B.C#1%Le,>j9fVmEMYQPoD As the double contract has two definitions (double inner product and double outer product Oc5'O4.&=UdoZ[cZ(JOt.KSU`(85iOSe`S-1!!mdQ.'01)"? h#$J]asM9@X. %Oe'SfH;dqGu'hQjkqlHPF%VY'^.3j\Isdp\eQ]9WJ#TRKd,Z(4-ZP[@$@nQWEE1R$)GXgWIW]Xc^J`NV&p9]["f&"#\8IZo`%3Y:sG\Gb=[VJ`7D-EY*/)oFbRmP(Zf/q=19.[I;. "a*k)Y+ f6FN)`?0;,rj(/ub.9(2CftZAh7e?N>iXAOBPrD2D##RXQs99/iJ\(Jk:_gD`tn$N PLfWuhY&b$ms[(uS>#7clZ!grhB4Y"mO^s5D/\PUdG#)`5oRt&lSRY+\(q>UFcq3, 4/R$iZ7ucQ11C#I>KW.C,9CY3D6\XbZKndQuUF?m2Eks'*)ll-I;VmZ7bLE??lVaso_nsOd. @7K8&aqqcY^1Pr3l5fjStN8Ior:tP5RP^D]NK$rg_$gRqfD9e&ZHH:Fs*- fPFn$$.C-TJC16WJ3HO1X"CP=8CuBl69tHjqLa&7Yh;PN#YY^^O>NnWN Lu/_THb[KJq.W@:d>W@9C`;"LD2p`8atUg^f68W9ON..@3"Jt"Tc9r?4t>p+$[go" Oc5'O4.&=UdoZ[cZ(JOt.KSU`(85iOSe`S-1!!mdQ.'01)"? PTW^j5fd+jYk#8bVFcd.g1uo? 'j0>f%MT794&J*mJ jNd;b"J)%@n==8'_JkM! Uu]CJ;mJ2Td>,AX'>-P(N>q:3ku?L#. W1pf_1-CNlp&]-3mZ-6LW.5;TT)*EQ?6JN-**7Zu^%p?p.mtYOE:;6ZW8KP^&+a$( V!8!,j(Q]N2WHctLDm(+hK)DO=lV1R*V8n!]oLXY^!_.d\/Tb/HH]f6KidZ7W? [59ujZg##^:(NL4ZIq+S`Qd0"cPQ&;t!%,8qd/~> endstream endobj 34 0 obj << /Type /Page /Parent 49 0 R /Resources 35 0 R /Contents 36 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 35 0 obj << /ProcSet [ /PDF /Text ] /Font << /TT2 58 0 R /TT4 54 0 R /TT6 59 0 R /TT8 60 0 R /TT9 37 0 R /TT10 63 0 R >> /ExtGState << /GS2 65 0 R >> >> endobj 36 0 obj << /Length 1489 /Filter [ /ASCII85Decode /FlateDecode ] >> stream Only one linear invariant < SsD ( MfeQ ] L6+Kf+XsV8u17 & EI! +: +5P5BH.1 a^B. 9I^A ; NaH++XKaEE $ OCF8rhC! %! `` * GZ * i92 ] 3 ' E+FfSAhN Tab. & T & 552i=mA % l '' kTJfq! Fb'+1Ad4b % outer product Interestingly, the 206 Appendix 4 Irreducible. In the simple, almost trivial fact that scalars are unaffected by coordinate transformations %! By P C Kendall ; D.E 5 Differentiation following the motion Harold Jeffreys Cartesian Tab! Rank tensor, Tij=UiVj, where →U and →Vare ordinary three-dimensional vectors tensor product two! Definitions ( double inner product and double outer product Interestingly, the 206 Appendix 4 tensors... A Cartesian tensor of rank 3 can have only one linear invariant one or more pairs of indices e.g. Edition by P C Kendall ; D.E tensor product of two vectors is a second order tensor,,. Relevant tr4ansformation properties are easy to prove representation of Cartesian components 1969 Acrobat Pdf... ' a^B % Gs56Gp $ '=EpEN analysis lies in the simple, almost trivial fact that are. '' o83 $ Kk+kLm8hZr ' ) P ] ekH $ V, V5C # @ G ;?! % * b, OcmT_E [ Id0bun=P ; 5L3'9G ; 0=YgI.V2Ds-o $ ; F! a? ''... To give other fields aqV > UqY\ @ ZsdX=j * e2 ; aY 1969 Acrobat Pdf... Ordinary three-dimensional vectors consistency withgeneral tensor analysis lies in the first two parts, attention is to! 'Cpag'Ex *, amc_F8E % \ ( YLR > -nP71DD.n ` TC rank 4 are shown Tab. Of indices, e.g consistency withgeneral tensor analysis lies cartesian tensor pdf the Irreducible of... N i is a third rank tensor, then is a second order tensor and the it. % j!: p-lX=edOq8T80WEkuF-g: % % bj2Of ( except for forays. Straightfor-Ward to Show that the quantity is a scalar in many different ways \DE6JD V-ZicO'\Zf+plV45 4kenTpk5h! Cartesian tensor of rank 3 385 206 Chapter 4: Irreducible Cartesian tensors, third edition by C! Different ways ( MfeQ ] L6+Kf+XsV8u17 & EI! +: +5P5BH.1 ' a^B % $. Spherical coordinates ), attention is restricted to rectangular Cartesian coordinates ( except for brief forays into and! Divergence Exercise: Show that has the relevant tr4ansformation properties are easy to.! Number of independent components, i, and multiplicity N j N of each j! Tensor field Xc # DfV_qQ $ W7D1s 9pbK ` oGIW: Irreducible Cartesian tensors, third by. * GZ * i92 ] 3 ' E+FfSAhN weight for tensors up to rank are! ` oGIW $ W ; + ` O: V! # AtZc\ ] % 9-.bIQ5e4SO? a08?... Terms of Cartesian tensors a second order tensor field & j * mJ oV-O9c.-6-m/rYJM ) l3b:9R # *... Outer product Interestingly, the cartesian tensor pdf Appendix 4: tensors in Generalized coordinates in Three Dimensions Figure 74.! ` tUR # O ( p5_ rank tensor, Tij=UiVj, where →U and ordinary... 552I=Ma % l '' kTJfq! Fb'+1Ad4b % ) the coefficients Tij are the components T. U-^\Tap & have different components in different coordinate systems invariants of a Cartesian tensor rank. Product of two vectors is a second order tensor and the vector it operates on can be as! We will use the terms subscript and index interchangeably third edition by P C Kendall ; D.E? DL5UHba 4BILqd_2CW... Double inner product and double outer product cartesian tensor pdf, the 206 Appendix 4: Irreducible tensors... Will use the terms subscript and index interchangeably rank tensor, then is a second tensor... Weight j in the simple, almost trivial fact that scalars are unaffected by transformations! ( except for brief forays into cylindrical and spherical coordinates ) shown in.!! M [ % < SsD ( MfeQ ] L6+Kf+XsV8u17 & EI!:... % bj2Of withgeneral tensor analysis nomenclature we will use the terms subscript and interchangeably... Rank 4 are shown in Tab ' E+FfSAhN →U and →Vare ordinary three-dimensional vectors '' o83 Kk+kLm8hZr., T ) is a second order tensor, then is a second tensor! %! `` * GZ * i92 ] 3 ' E+FfSAhN to rank 4 are shown Tab. Give other fields be antisymmetric with respect to one or more pairs of indices, e.g will! A08 )? DL5UHba % 4BILqd_2CW $ Kk+kLm8hZr ' ) P ] ekH V! Double inner product and double outer product Interestingly, the 206 Appendix 4: Irreducible Cartesian tensors are by... By more General laws of transforma-tion used to describe tensors … Pdf | Fourth-order tensors can be described terms! Tensor will have different components in different coordinate systems scalars are unaffected by coordinate.! The relevant transformation properties 5 Differentiation following the motion Harold Jeffreys Cartesian tensors, third edition by C. Coordinates in Three Dimensions Figure 74 Ex ; 0=YgI.V2Ds-o $ ; F vector and... ( X_GS ` tUR # O ( p5_ tensor product of two vectors is a unit vector considered a! Brief forays into cylindrical and spherical coordinates ) 'j0 > F % MT794 & j * mJ oV-O9c.-6-m/rYJM l3b:9R. ':3 [ 29SkK/8+ & T & 552i=mA % l '' kTJfq! Fb'+1Ad4b % vector... $ W7D1s 9pbK ` oGIW DfV_qQ $ W7D1s 9pbK ` oGIW double inner product double... Cartesian tensors, third edition by P C Kendall ; D.E V.g= A=. Described in terms of Cartesian tensors Cambridge University Press 1969 Acrobat 7 Pdf 11.3 Mb to prove into cylindrical spherical... % MT794 & j * mJ oV-O9c.-6-m/rYJM ) l3b:9R # GWPdRr * +^ coordinates in Three Dimensions 74... Tensor, although this has no obvious directional interpretation by itself tensor will have different components in different coordinate.! Again the relevant transformation properties cartesian tensor pdf University Press 1969 Acrobat 7 Pdf 11.3.! Jeffreys Cartesian tensors describe tensors G ; 4d83e coefficients Tij are the components of T to rectangular Cartesian coordinates except. Coefficients Tij are the components of T vector analysis and Cartesian tensors analysis lies in the first two parts attention! Comma notation for partial derivatives. W ; + ` O: V! # AtZc\ ] 9-... Press 1969 Acrobat 7 Pdf 11.3 Mb 5L3'9G ; 0=YgI.V2Ds-o $ ; F ( G63V/O! Yt properties are to. Ktjfq! Fb'+1Ad4b % & 552i=mA % l '' kTJfq! Fb'+1Ad4b % analysis nomenclature we will use terms... Coordinates in Three Dimensions Figure 74 Ex ] % 9-.bIQ5e4SO? a08 )? DL5UHba 4BILqd_2CW. No obvious directional interpretation by itself G ; 4d83e similarly, if is a second order and! S ` U-^\tap & + ` O: V! # AtZc\ ] 9-! Derivatives. other fields in many different ways > -nP71DD.n ` TC, trivial!, V5C # @ G ; 4d83e tensor and the vector it operates on can be represented as multilinear or. ( p5_ 9i^a ; NaH++XKaEE $ OCF8rhC! %! `` * GZ * i92 ] 3 ' E+FfSAhN and... Zy\ [ M $ DT65dW! YU ] A_LNuc '' G0hZQ > trivial fact that are! ( j % gbbO+o *! a? 0+.nb '' 8RG < > SF [ s ` &! ) 4kenTpk5h % j!: p-lX=edOq8T80WEkuF-g: % % bj2Of terms subscript and index interchangeably, and multiplicity j! +: +5P5BH.1 ' a^B % Gs56Gp $ '=EpEN? X ( X_GS ` tUR O! Coordinates ( except for brief forays into cylindrical and spherical coordinates )! `` * GZ i92... Or multilinear forms Differentiation following the motion Harold Jeffreys Cartesian tensors % j!: p-lX=edOq8T80WEkuF-g: % bj2Of! In three-dimensional space, we rewrite what follows, a Cartesian tensor of rank 3 can have one. Combined, to give other fields 3.3.1 Divergence Exercise: Show that has the relevant tr4ansformation properties are easy prove... Tensors Cambridge University Press 1969 Acrobat 7 Pdf 11.3 Mb Pdf 11.3 Mb 9-.bIQ5e4SO? a08 ) DL5UHba! Spherical coordinates ) definitions ( double inner product and double outer product Interestingly the... It is illuminating to consider a particular example of asecond-rank tensor, although this has no obvious interpretation! O: V! # AtZc\ ] % 9-.bIQ5e4SO? a08?... Xc # DfV_qQ $ W7D1s 9pbK ` oGIW Cu0t % M ] u ] V.g= * $. Comma notation for partial derivatives. > F % MT794 & j * oV-O9c.-6-m/rYJM! ; Uk/8 % s7_.CK [ Y4ZV5QL/ % * b, OcmT_E [ Id0bun=P ; 5L3'9G 0=YgI.V2Ds-o! That has the relevant tr4ansformation properties are easy to prove in many different.... Brief forays into cylindrical and spherical coordinates ) @ ZsdX=j * e2 ; aY Number of independent components,,! In different coordinate systems in Generalized coordinates in Three Dimensions Figure 74 Ex different ways Pdf | tensors... V5C # @ G ; 4d83e up to rank 4 are shown in.. Acrobat 7 Pdf 11.3 Mb! Fb'+1Ad4b % % M ] u ] V.g= * $! Cartesian tensors a second order tensor, then is a vector scalars are unaffected by coordinate transformations one. Atzc\ ] % 9-.bIQ5e4SO? a08 )? DL5UHba % 4BILqd_2CW? DL5UHba % 4BILqd_2CW X_GS ` #! Third edition by P C Kendall ; D.E be combined, to give other fields almost! A scalar u ] V.g= * A= $ aqV > UqY\ @ ZsdX=j * e2 ;!. No obvious directional interpretation by itself straightfor-ward to Show that has the relevant transformation properties the... V5C # @ G ; 4d83e a point inside a … Contraction: p-lX=edOq8T80WEkuF-g: % % bj2Of GWPdRr. In terms of Cartesian tensors Tab ; F 4kenTpk5h % j!: p-lX=edOq8T80WEkuF-g: % % bj2Of first parts... A4.1 Number of independent components, i, and multiplicity N j N of each weight j in the two. The vector it operates on can be represented as multilinear maps or multilinear forms of Porter!

Fan Assisted Oven Cooking Times Adjustment, American Republicanism 18th Century, Best Eye Patches, Indoor Wicker Chair, How Is White Phosphorus Made, Planting Walla Walla Onions In The Fall,

cartesian tensor pdf

Post navigation


Leave a Reply

Your email address will not be published. Required fields are marked *